The number of maximum primitive sets of integers

نویسندگان

چکیده

Abstract A set of integers is primitive if it does not contain an element dividing another. Let f ( n ) denote the number maximum-size subsets {1,…,2 }. We prove that limit α = lim n→∞ 1/ exists. Furthermore, we present algorithm approximating with (1 + ε multiplicative error in N steps, showing particular ≈ 1.318. Our can be adapted to estimate all sets {1,…, } as well. address another related problem Cameron and Erdős. They showed containing pairwise coprime {1,… between ${2^{\pi (n)}} \cdot {e^{(1/2 o(1))\sqrt }}$ {e^{(2 . show neither these bounds tight: there are fact {e^{(1 such sets.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Counting Function of Primitive Sets of Integers

Erdo s has shown that for a primitive set A/N a # A 1 (a log a)<const. This implies that A(x)<x (log log x log log log x) for infinitely many x. We prove that this is best possible apart from a factor (log log log x). 1999 Academic Press

متن کامل

on the number of maximum independent sets of graphs

let $g$ be a simple graph. an independent set is a set ofpairwise non-adjacent vertices. the number of vertices in a maximum independent set of $g$ isdenoted by $alpha(g)$. in this paper, we characterize graphs $g$ with $n$ vertices and with maximumnumber of maximum independent sets provided that $alpha(g)leq 2$ or $alpha(g)geq n-3$.

متن کامل

The number of Sidon sets and the maximum size of Sidon sets contained in a sparse random set of integers

A set A of non-negative integers is called a Sidon set if all the sums a1+a2, with a1 ≤ a2 and a1, a2 ∈ A, are distinct. A well-known problem on Sidon sets is the determination of the maximum possible size F (n) of a Sidon subset of [n] = {0, 1, . . . , n− 1}. Results of Chowla, Erdős, Singer and Turán from the 1940s give that F (n) = (1 + o(1)) √ n. We study Sidon subsets of sparse random sets...

متن کامل

Integers for the Number of Maximal Independent Sets in Graphs

Let G be a simple undirected graph. Denote by mi(G) (respectively, xi(G)) the number of maximal (respectively, maximum) independent sets in G. In this paper we determine the third and fouth largest value of mi(G) among all graphs of order n. Moreover, the extremal graphs achieving these values are also determined. Mathematics Subject Classification: 05C35, 05C69, 68R10

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Combinatorics, Probability & Computing

سال: 2021

ISSN: ['0963-5483', '1469-2163']

DOI: https://doi.org/10.1017/s0963548321000018